

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO

Nome do Componente Curricul	Código:		
ACIONAMENTOS ELÉTRICOS	CAT169		
Nome do Componente Curricular em inglês:			
ELECTRIC DRIVES			
Nome e sigla do departamento:		Unidade acadêmica:	
Departamento de Engenharia de C	Escola de Minas		
Nome do docente:			
João Carlos Vilela de Castro			
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática	
60 horas	02 horas/aula	02 horas/aula	
Data de aprovação na assembleia departamental: 27/10/2022			

Ementa: Fundamentos da conversão eletromecânica da energia. Princípios de funcionamento, características estáticas e dinâmicas, especificação e modelagem de máquinas elétricas. Princípios de funcionamento, métodos de comando e especificação dos conversores estáticos: retificadores, pulsadores e inversores. Princípios gerais, comportamento estático e dinâmico, e desempenho dos variadores de velocidade e de posição: estruturas, modelos e redutores.

Conteúdo programático:

Fundamentos de Eletrônica de Potência; Chaves semicondutoras: Diodos, Tiristores, Transistores, IGBT's; Conversores CA-CC: Retificadores não controlados e controlados; Conversores CC-CC: comando PWM, conversores Step-down e Step-up; Conversores CC-CA: conceitos básicos, inversores monofásicos e trifásicos; Acionamentos de Máquinas de corrente contínua: Princípios de funcionamento; Modelo de uma máquina CC; Sistemas de acionamento para máquinas CC; Controle de velocidade e posição para acionamentos de máquinas CC. Acionamentos de máquinas de corrente alternada: Máquinas de indução; Princípios básicos de funcionamento; Modelo de uma máquina CA; Sistemas de acionamento CA de velocidade variável; Esquemas de controle de acionamentos CA para máquinas de indução; Máquinas síncronas: Princípios de funcionamento, modelo de uma maquina síncrona, Sistemas de acionamento e controle de máquinas síncronas. Outras aplicações: Fontes chaveadas, condicionadores de potencia e nobreaks.

Objetivos:

Apresentar ao aluno os princípios básicos de funcionamento e métodos de comando de conversores estáticos retificadores e inversores, além de fundamentos da conversão eletromecânica da energia. Introduzir os princípios de funcionamento, características estáticas e dinâmicas, especificação e modelagem de máquinas elétricas, enfatizando motores de corrente contínua e alternada. Abordar métodos para acionamento e controle de motores elétricos CC e CA.

Metodologia: Aulas teóricas expositivas (quadro negro e projetor), aulas de exercícios, trabalhos práticos, algumas aulas práticas em laboratório.

Atividades avaliativas:

N1 = 1a avaliação: prova: 2,5 pontos; N2 = 2a avaliação: prova: 2,5 pontos;

N3 = Trabalho Final: 2,5 pontos;

N4 = Práticas (participação e relatórios): 1,5 pontos;

N5 = Listas de Exercícios: 1 ponto; Média Final = N1 + N2 + N3 + N4 + N5

Datas Avaliação: 06/02/23 2a Avaliação: 24/03/23 Exame Especial: 31/03/23

Cronograma:

Cronograma:	Cronograma:		
Data	Conteúdo Programático		
1) 28/11/22	Apresentação da disciplina: Plano de ensino e forma de avaliação. Princípios da conversão eletromecânica da energia: Chaves Estáticas, Conversores estáticos, Aplicações, Máquinas Elétricas.		
2) 02/12/22	Chaves estáticas: Diodo, BJT, Mosfet, IGBT, UJT, SCR, SCS, GTO, Diac, Triac e MCT.		
3) 05/12/22	CONVERSORES ESTÁTICOS: Conversores CA-CC: Retificadores monofásicos não controlados, totalmente controlados e semi-controlados. Retificadores bifásicos		
4) 09/12/22	Conversores CA-CC: Retificadores trifásicos não controlados, totalmente controlados e semi-controlados.		
5) 12/12/22	Comandos em Conversores CA-CC Controle de retificadores tiristorizados, Modulação por largura de Pulsos (PWM).		
6) 16/12/22	Conversores CC-CC: Aplicações, Classificação, Conversores CC-CC elementares: Buck (step-down).		
7) 19/12/22	Prática I: Retificador monofásico tiristorizado;		
8) 23/12/22	Conversores CC-CC elementares, continuação: Conversores Boost (step-up), Buck-Boost, SEPIC, Choppers.		
9) 16/01/23	Comandos em Conversores CC-CC. Modulação por largura de Pulsos (PWM).		
10) 20/01/23	Exercícios e aplicações sobre conversores estáticos.		
11) 23/01/23	ACIONAMENTOS DE MÁQUINAS CC Princípios de funcionamento do motor CC, Modelo da máquina CC, Métodos de controle de velocidade do motor CC. Conversores estáticos para acionamento de máquinas CC.		
12) 27/01/23	Medição de velocidade e posição. Controle de velocidade e posição para acionamentos de máquinas CC. Sensores, Sistemas sensorless;		
13) 30/01/23	Exercícios sobre máquinas CC.		
14) 03/02/23	<u>Pratica II:</u> Acionamento de motor CC com Chopper de 1 quadrante microcontrolado.		
15) 06/02/23	1ª AVALIAÇÃO		
16) 10/02/23	<u>Prática IV:</u> . Levantamento de parâmetros de um motor CC.		
17) 13/02/23	Conversores CC-CA (Inversores): Classificação, Inversores monofásicos.		
18) 17/02/23	Conversores CC-CA (Inversores): Inversores trifásicos.		
19) 24/02/23	Exercícios: Inversores		

20) 27/02/23	ACIONAMENTO DE MÁQUINAS CA Máquinas de indução: Princípios básicos de funcionamento. Modelo de uma máquina CA.
21) 03/03/23	Sistemas de acionamento de motores CA para variação de velocidade.
22) 06/03/23	Esquemas de controle de acionamentos CA para máquinas de indução. Observadores de fluxo para máquinas CA.
23) 10/03/23	Exercícios: Acionamento de Máquinas CA
24) 13/03/23	ACIONAMENTO DE MÁQUINAS CA: Máquinas síncronas: Princípios de funcionamento. Modelo de uma máquina síncrona. Sistemas de acionamento e controle de máquinas síncronas. Outras máquinas
25) 17/03/23	Pratica III: Acionamento de motor CC com Chopper de 4 quadrantes.
26) 20/03/23	Pratica III: Controle em malha fechada de um motor CC.
27) 24/03/23	PROVA 2

Bibliografia básica:

- 1) MOHAN, Ned; UNDELAND, Tore M; ROBBINS, William P. Power electronics: converters, applications, and design. 3rd.ed. Danvers, MA: John Wiley & Sons 2003. xvii, 802 p.
- FITZGERALD, A. E.; KINGSLEY, Charles; UMANS, Stephen D. Máquinas elétricas: com introdução à eletrônica de potência. 6. ed. Porto Alegre: Bookman 2006. xiii, 648 p. ISBN 9788560031047.
- 3) DEL TORO, Vincent. Fundamentos de máquinas elétricas. Rio de Janeiro: Prentice-Hall do Brasil c1994. xiii, 550 p. ISBN 8570540531
- CHAPMAN, Stephen J. Fundamentos de Máquinas Elétricas. Grupo A, 2013. 9788580552072.
 Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788580552072/. Acesso em: 08 jun. 2022.

Bibliografia complementar:

- 1) MOHAN, Ned. Máquinas Elétricas e Acionamentos Curso Introdutório. Grupo GEN, 2015. 978-85-216-2835-4. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/978-85-216-2835-4/. Acesso em: 08 jun. 2022.
- 2) BOSE, Bimal K. Power electronics and motor drives: advances and trends. Burlington: Elsevier, c2006. xvi, 917 p. ISBN 0120884054.
- 3) BOSE, Bimal K. Modern power electronics and AC drives. [New York, NY]: Pearson, [2015]. xxiii, 720 p.
- 4) KRAUSE, Paul C.; INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Analysis of electric machinery and drive systems. 3rd. ed. Hoboken: IEEE Press, 2013. Wiley, xiv, 659 p. (IEEE Press series on power engineeering; 37). ISBN 9781118024294.
- 5) HART, Daniel W. Eletrônica de potência: análise e projetos de circuitos. [Digite o Local da Editora]: Grupo A, 2012. 9788580550474. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788580550474/. Acesso em: 08 jun. 2022.
- 6) UMANS, Stephen D. Máquinas Elétricas de Fitzgerald e Kingsley. [Digite o Local da Editora]: Grupo A, 2014. 9788580553741. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788580553741/. Acesso em: 08 jun. 2022.