

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO

_				
Nome do Componente Curricular em português:			Código:	
TEORIA DE CONTROLE II			CAT183	
Nome do Componente Curricular em inglês: CONTROL THEORY II				
Nome e sigla do departamento:			Unidade acadêmica:	
Departamento de Engenharia de Controle e Automação / DECAT			Escola de Minas	
Nome do docente: João Carlos Vilela de Castro				
Carga ho	rária semestral	Carga horária semanal teórica	Carga horária semanal prática	
_	0 horas	04 horas/aula	00 horas/aula	
Data de aprovação na assembleia departamental: 28/07/2020				
Ementa: Conceitos de sinais contínuos, discretos e amostrados. Teoria de controle. Transformada Z. Sistemas de tempo real. Processos e sistemas contínuos e discretos. Controladores e reguladores industriais.				
Conteúdo programático:				
	•	os e amostrados: equações discretas -	– equações a diferenças,	
		dos, análise de estabilidade; modelag		
discretização de sistemas contínuos, solução da equação dinâmica discreta, controlabilidade e				
observabilidade, representações em variáveis de estado, análise de estabilidade; projeto de				
controladores digitais: discretização de controladores contínuos, ajuste empírico de controladores				
analógicos, técnicas de discretização, projeto de controladores discretos. Sistemas de tempo real: princípios e características.				
Objetivos: Introduzir ao aluno conceitos de: sinais contínuos e discretos; amostragem de sinais contínuos; teoria				
de controle discreto; transformada z; modelagem de sistemas de tempo discreto; processos e sistemas contínuos e discretos; análise de sistemas discretos no domínio da frequência; projeto de controladores				
digitais; manipulação de sistemas discretos em espaço de estados; projeto de controladores e				
observadores de estados em tempo discreto.				
Metodologia: Aulas teóricas expositivas (quadro branco e projetor), aulas de exercícios e trabalhos				
extra-classe.				
Atividades avaliativas: 3 provas totalizando 6,5 pontos e 3,5 pontos de trabalhos.				
Datas das provas: 1ª Prova: 08/09/2022 – 2,5 pontos				
2^{a} Prova: $06/10/2022 - 2.0$ pontos				
3ª Prova: 28/10/2022 – 2,0 pontos				
Exame especial: 03/11/2022				
Cronograma:				
Semana		Conteúdo Programático	o	

1. 25 e 28 jul	Introdução. Apresentação do curso. Revisão de sistemas de controle SISO contínuos. Sistemas discretos: definições básicas; Tipos de Sinais; Aquisição, conversão e digitalização de sinais; Erros de digitalização.		
2. 01 e 04 ago	Equações de diferença e Transformada z. Transformada z inversa; Métodos de cálculo da transformada z inversa; Transformada z a partir de funções transferências.		
3. 08 e 11 ago	Amostradores e Seguradores; Teorema da amostragem; Reconstrução do sinal amostrado.		
4. 15 e 18 ago	Discretização de sistemas com o ZOH (SOZ); Função de Transferência Pulsada		
5. 22 e 25 ago	Especificações de desempenho de sistemas discretos; Mapeamento do plano z; Análise de estabilidade de sistemas discretos.		
6. 29 ago e 1 set	Análise pelo lugar geométrico das raízes (LGR) em sistemas discretos; Efeitos do período de amostragem na estabilidade relativa. Projeto de controladores discretos pelo método do lugar geométrico das raízes.		
7. 05 e 08 set	Sintonia de controladores PID pelo método Ziegler Nichols. Projeto de controladores discretos por síntese direta; Controle "dead-beat". PROVA 1 (Aula de dúvidas: Exemplos e Exercícios)		
8. 12 e 15 set	Análise em espaço de estados: Introdução; Representação no espaço de estados; Matriz de transferência pulsada; Transformações de similaridade.		
9. 19 e 22 set	Solução da equação de estados; Discretização de equações contínuas em espaço de estados Controlabilidade e Observabilidade; Exercícios.		
10. 26 e 29 set	Controle por realimentação de estados; Projeto por alocação de polos; Fórmula de Ackermmann para alocação de polos; Controle "deadbeat" em espaço de estados. Exercícios. Observadores de estado; Observadores de ordem completa; Observadores de ordem reduzida; Exercícios.		
11. 03 e 06 out	PROVA 2 (Aula de dúvidas: Exemplos e exercícios)		
12. 10 e 13 out	Análise no domínio da frequência de sistemas contínuos. Gráficos Logarítmicos (diagramas de Bode).		
13. 17 e 20 out	Análise no domínio da frequência de sistemas contínuos (continuação);. Gráficos Polares. Critério de Nyquist. Projeto de controladores no domínio da frequência.		
14. 24 e 28 out	PROVA 3		

Bibliografia básica:

- 1. OGATA, KATSUHIRO. Discrete-Time Control Systems. Prentice Hall, 1995, 2 ed..
- 2. PHILIPS, CHARLES; NAGLE, TROY e CHAKRABORTTY, ARANYA. **Digital Control System Analysis and Design.** Prentice Hall, 2007, 4th ed..
- 3. ASSUNÇÃO, EDVALDO. Controle Digital. Disponível em:
- https://www.feis.unesp.br/Home/departamentos/engenhariaeletrica/lpc1672/controle-digital.pdf. Acesso em 20/06/2019. UNESP, 2008.
- 4. OPPENHEIM, ALAN V.; SCHAFER, RONALD W. . Discrete-Time Signal Processing. Prentice Hall, 2009, 3 ed..

Bibliografia complementar:

1. ASTOM, KARL JOHAN; WITTENMARK, BJORN. Computer-Controlled System: Theory and

Design. Prentice Hall, 1996, 3 ed..

- 2. LATHI, B. P. Sinais e Sistemas Lineares. Bookman, 2007, 2 ed..
- 3. BOLTON, WILLIAM. Mechatronics: Eletronic Control Systems in Mechanical and Electrical Engineering. Prentice Hall, 2003, 3 ed.
- 4. HAYKIN, SIMON; VEEN, BARRY V.. Sinais e Sistemas. Bookman, 2001.
- 5. HSU, HWEI P.. Sinais e Sistemas. Coleção Schaum. Bookman, 2004.