

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO

Nome do Componente Curricu	Código:			
Teoria de Controle II	CAT183			
Nome do Componente Curricular em inglês:				
Control Theory II				
Nome e sigla do departamento:	Unidade acadêmica:			
Departamento de Engenharia de C	Escola de Minas			
Nome do docente:				
João Carlos Vilela de Castro				
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática		
60 horas	04 horas/aula	00 horas/aula		
Data de aprovação na assembleia departamental: 08/02/2024				
Ementa : Conceitos de sinais contínuos, discretos e amostrados. Teoria de controle. Transformada Z.				

Conteúdo programático:

Representação de sistemas discretos e amostrados: equações discretas — equações a diferenças, transformada Z, sistemas amostrados, análise de estabilidade; modelagem no espaço de estado: discretização de sistemas contínuos, solução da equação dinâmica discreta, controlabilidade e observabilidade, representações em variáveis de estado, análise de estabilidade; projeto de controladores digitais: discretização de controladores contínuos, ajuste empírico de controladores analógicos, técnicas de discretização, projeto de controladores discretos. Sistemas de tempo real: princípios e características.

Sistemas de tempo real. Processos e sistemas contínuos e discretos. Controladores e reguladores

Objetivos:

industriais.

Introduzir ao aluno conceitos de: sinais contínuos e discretos; amostragem de sinais contínuos; teoria de controle discreto; transformada z; modelagem de sistemas de tempo discreto; processos e sistemas contínuos e discretos; análise de sistemas discretos no domínio da frequência; projeto de controladores digitais; manipulação de sistemas discretos em espaço de estados; projeto de controladores e observadores de estados em tempo discreto.

Metodologia: Aulas teóricas expositivas (quadro branco e projetor), aulas de exercícios e trabalhos extra-classe.

Atividades avaliativas:

N1 = Prova 1: 2,5 pontos;

N2 = Prova 2: 2,5 pontos;

N3 = Prova 3: 1,0 ponto;

N4 = Trabalho Final: 3 pontos;

N5 = Listas de Exercícios: 1 ponto;

Média Final = N1 + N2 + N3 + N4 + N5

Datas Avaliações:

Prova 1: 09/05/24 Prova 2: 20/06/24

Prova 3: 18/07/24

Exame Especial: 25/07/24

Cro	nogram	na:	
Data		Conteúdo Programático	
1)	26/03	Introdução. Apresentação do curso. Revisão de sistemas de controle SISO contínuos.	
2)	02/04	Sistemas discretos: definições básicas; Tipos de Sinais; Aquisição, conversão e digitalização de sinais; Erros de digitalização.	
3)	04/04	Equações de diferença e Transformada z. Transformada z a partir de funções transferências.	
4)	09/04	Transformada z inversa; Métodos de cálculo da transformada z inversa;	
5)	11/04	Amostradores e Seguradores; Teorema da amostragem; Reconstrução do sinal amostrado.	
6)	16/04	Discretização de sistemas com o ZOH (SOZ); Função de Transferência Pulsada	
7)	18/04	Especificações de desempenho de sistemas discretos; Mapeamento do plano z;	
8)	23/04	Análise de estabilidade de sistemas discretos.	
9)	25/04	Análise pelo lugar geométrico das raízes (LGR) em sistemas discretos; Efeitos do período de amostragem na estabilidade relativa.	
10)	30/04	Projeto de controladores discretos pelo método do lugar geométrico das raízes.	
11)	02/05	Sintonia de controladores PID. Método Ziegler Nichols. Projeto de controladores discretos por síntese direta; Controle "dead-beat".	
12)	07/05	Exercícios	
13)	09/05	PROVA 1	
14)	14/05	Análise em espaço de estados: Introdução; Representação no espaço de estados;	
15)	16/05	Matriz de transferência pulsada; Transformações de similaridade.	
16)	21/05	Solução da equação de estados; Discretização de equações contínuas em espaço de estados.	
17)	23/05	Controlabilidade e Observabilidade; Controle por realimentação de estados; Projeto de regulador por alocação de polos;	
18)	28/05	Controle "deadbeat" em espaço de estados. Projeto de seguidor de referência em espaço de estados.	
19)	04/06	Inserção de integradores no projeto por realimentação de estado.	
20)	06/06	Observadores de estado; Observadores de ordem completa;	
21)	11/06	Observadores de ordem reduzida;	
22)	13/06	Análise no domínio da frequência de sistemas contínuos. Introdução	
23)	18/06	Aula de dúvidas - Trabalhos/Exercícios.	
24)	20/06	PROVA 2	
25)	25/06	Gráficos Logarítmicos (diagramas de Bode).	

26)	27/06	Gráficos Polares. Diagramas de Nyquist.	
27)	02/07	Análise de estabilidade no domínio da frequência de sistemas contínuos. Critérios de Bode e de Nyquist.	
28)	04/07	Análise de sistemas discretos no domínio da frequência.	
29)	09/07	Projeto de controladores no domínio da frequência. Compensação por atraso de fase.	
30)	11/07	Projeto de controladores no domínio da frequência. Compensação por avanço e atrasoavanço de fase.	
31)	18/07	PROVA 3	
32)	25/07	EXAME ESPECIAL	

Bibliografia básica:

- 1. OGATA, KATSUHIRO. Discrete-Time Control Systems. Prentice Hall, 1995, 2 ed...
- 2. PHILIPS, CHARLES; NAGLE, TROY e CHAKRABORTTY, ARANYA. **Digital Control System Analysis and Design.** Prentice Hall, 2007, 4th ed..
- 3. ASSUNÇÃO, EDVALDO. Controle Digital. Disponível em:
- https://www.feis.unesp.br/Home/departamentos/engenhariaeletrica/lpc1672/controle-digital.pdf. Acesso em 20/06/2019. UNESP, 2008.
- 4. OPPENHEIM, ALAN V.; SCHAFER, RONALD W. . **Discrete-Time Signal Processing**. Prentice Hall, 2009, 3 ed..

Bibliografia complementar:

- 1. AGUIRRE, L. Controle de Sistemas Amostrados. [s.l.]: Independently Published, 2019.
- 2. ASTOM, KARL JOHAN; WITTENMARK, BJORN. Computer-Controlled System: Theory and Design. Prentice Hall, 1996, 3 ed..
- 3. LATHI, B. P. Sinais e Sistemas Lineares. Bookman, 2007, 2 ed..
- 4. BOLTON, WILLIAM. Mechatronics: Eletronic Control Systems in Mechanical and Electrical Engineering. Prentice Hall, 2003, 3 ed.
- 5. HAYKIN, SIMON; VEEN, BARRY V.. Sinais e Sistemas. Bookman, 2001.
- 6. HSU, HWEI P.. Sinais e Sistemas. Coleção Schaum. Bookman, 2004.