

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUCAÇÃO PLANO DE ENSINO

Nome do Componente Curricular em português:		Código: CAT343	
Robótica Móvel			
Nome do Componente Curricular em inglês:			
Mobile Robotics			
Nome e sigla do departamento:		Unidade acadêmica:	
Departamento de Engenharia d	T Escola de Minas		
Nome do docente: Edson Bernardes Ferreira Filho			
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática	
60 horas	03 horas/aula	1 horas/aula	
Data de aprovação na assembleia departamental: 13/01/2022			
1			

Conteúdo programático:

Unidade 1 – Introdução à robótica móvel

• História, classificação e arquiteturas.

Unidade 2 – Locomoção

- Questões-chave para locomoção de robôs.
- Robôs móveis com "pernas": princípios, configurações, estabilidade.
- Robôs móveis com rodas: configurações, projeto.
- Introdução à robótica aérea.

Unidade 3 – Cinemática

- Modelos matemáticos.
- Controle cinemático.

Unidade 4 – Percepção

- Sensores.
- Fundamentos de visão computacional.

Unidade 5 – Localização

• Introdução aos métodos de localização e SLAM.

Unidade 6 – Planejamento e Navegação

- Planejamento de trajetórias.
- Navegação.

Objetivos: Fazer com que o estudante compreenda os fundamentos básicos da robótica móvel, sendo capaz de produzir seu próprio sistema de controle e localização.

Metodologia: Aulas expositivas, exercícios e trabalhos práticos. Trabalhos práticos: aprendizagem baseada em projetos (Metodologia Ativa).

Atividades avaliativas: Serão realizados três trabalhos práticos (TP1, TP2 e TPF). Cada trabalho terá avaliada os resultados experimentais, a apresentação, o relatório, bem como a participação em aulas práticas relacionadas ao trabalho. Também será realizada uma prova P. Aprovação: a média aritmética 0,25 x TP1 + 0,25 x TP2 + 0,25 x TPF + 0,25 x P deve ser maior

ou igual a 6,0.		
Cronograma:		
1 ^a e 2 ^a semanas	Introdução à robótica móvel	
3 ^a semana	Locomoção	
4 e 5 ^a semanas	Cinemática	
6 ^a semana	Percepção	
7 ^a semana	Apresentação Trabalho Prático 1 (18/04/2022)	
8 ^a semana	Percepção	
9 ^a semana	Localização	
10 ^a semana	Planejamento e Navegação	
11 ^a semana	Apresentação Trabalho Prático 2 (23/05/2021)	
12 ^a semana	Planejamento e Navegação	
13 ^a semana	Prova (06/06/2022)	
14 ^a semana	Apresentação Trabalho Prático Final (17/06/2022)	
15 ^a semana	Exame Especial (24/06/2022)	

Bibliografia básica:

- [1] SIEGWART, R. e Nourbakhsh, I. Introduction to autonomous mobile robots. The MIT press, 2004.
- [2] PIERI, E. R. Curso de Robótica Móvel (Apostila). Programa de pós-graduação em Engenharia Elétrica, da UFSC. Florianópolis, 2002.
- [3] NUNES, A. et. al. The Turtles: O guia prático e introdutório de simulações em robótica com ROS, 2021.

Bibliografia complementar:

- [1] HOLLAND, J. M. Designing Autonomous Mobile Robots: Inside the mind of an intelligent machine. 1.ed. Elsevier, 2004.
- [2] CHOSET, H.et al. Principles of Robot Motion: Theory, algorithms and Implementations. The MIT Press, 2005.
- [3] SPONG, M. W.; VIDYASAGAR, M. Robot Dynamics and Control. 1st ed. New York, NY, US: John Wiley & Sons, Inc., 1989.
- [4] CRAIG, John J. Robótica. 3.ed. São Paulo: Pearson Education do Brasil, 2013.
- [5] OGATA, Katsuhiko. Engenharia de controle moderno. 5. ed. São Paulo: Pearson, 2010.